Examples of succinct writing

Michael McCarthy

Almost every piece of writing can be more succinct. The following examples give a long-winded version and then a succinct version.

Referencing Tables and Figures.

Table 1 contains the results of the analyses, which show that Y increases with X.

Y increases with X (Table 1).

resulted in, had the effect of, require consideration of, shows an understanding of, etc...

Increasing X resulted in an increase in Y.

Y increased with X.

Increasing X had the effect of increasing Y.

Y increased with X.

X shows an understanding of Y.

X understands Y.

led to a decrease/increase/change in

X led to an increase in Y.

X increased Y.

give an indication of

X gives an indication of Y.

X indicates Y.

There are ... that

There are a range of factors that influence Y.
A range of factors influence Y.
Several factors influence Y.

Change "has a <noun> on", to "<verb>", "make a <noun> to" to "<verb>"

X has an effect on Y.
X affects Y.
X can make a difference to Y.
X can affect Y.

Places an <noun> on...
X places an emphasis on Y.
X emphasises Y.

Y is dependent on X
Y depends on X.

There was a tendency for X to <verb> Y.

There was a tendency for X to increase Y. Passive voice
X tended to increase Y. Active voice
Two examples from my bookshelf...

Look for *prepositions* such as of, in, to, by, within, etc. *Aim to reduce their use.*

"We simulated the movement of Leadbeater's Possum between patches of suitable habitat by invoking migration and diffusion sub-models that are available within ALEX (see Chapter 2).” 26 words

The word "invoking" is perhaps not necessary, and "that are available within" seems a candidate for reduction. Here we go...

ALEX’s migration and diffusion sub-models (see Chapter 2) simulated the movement of Leadbeater's Possum between habitat patches. 17 words – reduced by about 1/3

If the context of possums being Leadbeater's Possum is clear (it is a book about Leadbeater's Possum after all, so this is probably the case):

ALEX’s migration and diffusion sub-models (Chapter 2) simulated possum movement between habitat patches. 13 words – reduced by 1/2

If patches can always be considered "habitat patches", and the context if using the program ALEX is obvious:

Migration and diffusion sub-models (Chapter 2) simulated possum movement between patches. 11 words – reduced by >1/2

Avoid indirect language – use active voice.

From Niemelä et al. (2009, p. 15 in Ecology of Cities and Towns, edited by McDonnell et al., Cambridge Uni Press, Cambridge) – about the fifth haphazard page encountered:

"Another application of landscape ecology and the island biogeography theory has been the recommendation that habitat patches should be connected by movement conduits (corridors, greenways) to enhance dispersal of individuals and thereby increase population persistence in the connected patches (Simberloff et al., 1992; Niemelä, 1996). According to recommendations by Noss (1993), such greenways should be designed and managed for native species. This will require consideration of the needs of species sensitive to fragmentation and human disturbance over the needs of introduced and opportunistic species that tolerate or thrive in urban landscapes (see also Dawson, 1994)." 95 words.

Landscape ecology and island biogeography theory also highlight that movement conduits (corridors, greenways) should connect habitat patches to enhance dispersal of individuals, thereby increasing population persistence (Simberloff et al., 1992; Niemelä, 1996). These conduits should be designed and managed to ensure that species sensitive to fragmentation...
and human disturbance are benefited more than species that tolerate or thrive in urban landscapes (Noss, 1993; Dawson, 1994). 65 words – reduced by about 1/3.

Landscape ecology and island biogeography theory highlight that movement conduits (corridors, greenways) should connect habitat patches to enhance dispersal, which increases population persistence (Simberloff et al., 1992; Niemelä, 1996). Design and management of these conduits should ensure that species sensitive to fragmentation and human disturbance benefit more than species that tolerate or thrive in urban landscapes (Noss, 1993; Dawson, 1994). 60 words – reduced by about 1/3.

Some more examples from my own writing that could be improved:

Plant and animal survey detection rates are important for ecological surveys, environmental impact assessment, invasive species monitoring, and modeling species distributions. Species can be difficult to detect when rare but, in general, how detection probabilities vary with abundance is unknown. We developed a new detectability model based on the time to detection of the first individual of a species. Based on this model, the predicted detection rate is proportional to a power function of abundance with a scaling exponent between zero and one that depends on the distribution of individuals in space. We estimated the model parameters with data from three independent datasets: searches for chenopod shrub species and coins, experimental searches for planted seedlings, and frog surveys at multiple sites in sub-tropical forests of eastern Australia. Analyses based on the detection time and detection probability suggest that detection rate increases with abundance as predicted. The model provides a way to scale detection rates to cases of low abundance when direct estimation of detection rates is often impractical.

Detecting plants and animals is important for ecological surveys, environmental impact assessment, invasive species monitoring, and modeling species distributions. Species can be difficult to detect when rare but, in general, the relationship between detection probabilities and abundance is unknown. We developed a new detectability model based on the time to detection of the first individual of a species. Based on this model, the predicted detection rate is proportional to a power function of abundance with a scaling exponent between zero and one that depends on the distribution of individuals in space. We estimated the model parameters with data from three independent datasets: searches for chenopod shrub species and coins, experimental searches for planted seedlings, and frog surveys at multiple sites in sub-tropical forests of eastern Australia. Analyses based on the detection time and detection probability suggest that detection rate increases with abundance as predicted. The model can scale detection rates to cases of low abundance when direct estimation of detection rates is often impractical.
It is clear from the results that when conducting a study involving the ability of participants to detect a species, it is important to consider the local abundance of these species. Our data on plant detection appear to be well-explained by the models. For the plant species in the first study, detectability varied somewhat among quadrats after accounting for abundance of the target (Fig. 1). There was little unexplained variation among people, after accounting for abundance and quadrat search order in the woodland plant study, but noticeable variation among people in the planted seedling study. Areas for further research include examining attributes of the environment, species and searchers that might influence detectability, such as those discussed above.

The ability of participants to detect a species clearly increases with the local abundance of the species, with our data on plant detection well-explained by the models. Plant detectability in the first study varied somewhat among quadrats after accounting for abundance of the target (Fig. 1). Unexplained variation among people was small, after accounting for abundance and quadrat search order in the woodland plant study, but detectability varied among people in the planted seedling study. Areas for further research include examining attributes of the environment, species and searchers that might influence detectability, such as those discussed above.